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Summary

The authors present a critical analysis of the recent literature related to modeling the con-
tinuum mechanical behavior of carbon nanotubes; they also describe a methodology based on
combining molecular dynamics simulations, equivalent continua modeling, and mathematical
homogenization theory which is directed at obtaining the constitutive relations that can be
used to model a nanotube as an elastic cylindrical shell.



I. Background (The Literature Review)

Interest has been generated in nano-structured materials because of their potential for
providing significant improvements in both mechanical and physical properties with respect
to traditional structural materials. Investigations [1] point to the fact that carbon nanotubes
possess a high elastic modulus (in the 1-5 TPa range) and can sustain an elastic strain on
the order of 5% and a fracture strain up to 20%; their strength is, therefore ‘unmatched by
any other known material’ [2]. As indicated in [3] and [4], because small fiber composites are
easier to process, the mechanical properties of carbon nanotubes, coupled with their small
dimensions and large aspect ratios, make them candidates for the fabrication of the optimal
carbon fiber reinforced materials. Work is needed on modeling the constitutive response
of single-walled carbon nanotube (SWNT’s) and multi-walled carbon nanotubes (MWNT’s)
in order that reliable constitutive relations can be developed to predict the bulk mechanical
properties of nanotube-polymer composites in terms of the molecular structure of the polymer,
the nanotubes, and the polymer/nanotube interfaces. As pointed out, in [5], ‘in order to
implement nanotube-composite design intelligently, it is vital to understand the mechanical
behavior of nanotubes.” As the authors of [6] indicate ‘even classical molecular dynamics
(MD) computations are still limited to simulating on the order of 10® — 10°® atoms for a
few nanoseconds. The simulation of larger systems or longer times must currently be left to
continuum methods.” The effective continuum modeling of carbon nanotubes, the graphene
layers of which they are the ‘cylindrical’ images, and the delineation of the mapping which
takes one from the graphene layer to the nanotube surface, as well as the dependence of that
mapping on the chirality vector, form one of the central foci of this proposal, the other being the
deduction of a set of constitutive relations for the response of nanotube/polymer composites.

Almost all modeling of the response of carbon nanotubes ([1], [7]-[25]), and irrespective of
whether the authors treat the nanotubes as shells (with some ‘effective’ thickness) or as beams
(with some effective ‘cross-section’), assumes that the ‘surface’ of the ‘cylindrical’ nanotube
exhibits isotropic mechanical response to deformations; this assumption is based, in turn, on
two hypotheses, namely, that

(i) the response of a graphene layer is a consequence of the isotropic behavior of graphite
([26], Chapter 3) in the basal plane (or, alternatively, as argued in [9], that the isotropic
response of a graphene sheet is a consequence of the intrinsic hexagonal symmetry of
the array of carbon atoms comprising the sheet) and

(ii) that the nanotube can be viewed (e.g., [13]) as a ‘conformal mapping of a two dimensional
honeycomb lattice to the surface of a cylinder subjected to periodic boundary conditions’

Our research has shown that neither of hypotheses (i) and (i) is in accord with the recent
literature [6] on MD simulations of the response of carbon nanotubes, or with ezperimental
observations. Maintaining the isotropy hypothesis for the response of the nanotube in its basal
plane has led to inconsistencies among the results for the bending stiffness of SWNT’s, the
representative thickness of nanotubes, and experimental results on in-plane stiffness; these
inconsistencies are highlighted in § II. As noted in [6] ‘the fundamental assumption of the
continuum approximation, that quantities vary slowly over lengths on the order of the atomic
scales, breaks down in nano-mechanics.’

Since their discovery there has been an increasing interest in carbon nanotubes because
of their novel structure and properties and the wealth of potentially important applications.
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As indicated, e.g., in [24], beyond being remarkably stiff and strong, SWN'T’s are outstanding
conductors of electricity and are ‘projected to conduct heat even better than diamond.” Under
development are SWNT nanodevices and nanocircuits exhibiting superior logic and amplifi-
cation functions. Because nanotubes are hollow they can be used in sensitive sensor devices
as well as in a variety of biomedical applications.

Composite materials based on carbon nanotubes have the potential of providing strength-
to-weight ratios which exceed those of any materials currently available, in part because aspect
ratios for nanotube fibers of well over 1000 are realizable. As indicated in, e.g., [35], ‘in con-
trast to standard carbon fibers nanotubes remain curved and interwoven in the composite
suggesting extreme flexibility.” Effective utilization of nanotubes in composites depends on
the ability to disperse the nanotubes homogeneously throughout the matrix (without destroy-
ing their integrity). Also, there must be good interfacial bonding between the nanotubes and
the polymer to achieve load transfer across the nanotube-matrix interface; the vehicle for
such load transfer is the interfacial shear stress. Provided the load can be effectively trans-
ferred to the nanotube, the modulus of the composite is conjectured to be that of randomly
oriented short fiber composites containing fibers of extremely high modulus and strength.
Nanotube composites can be modeled by standard techniques in the theory of heterogeneous
materials ( e.g., [36] or [37]), or would themselves become a suitable object to which to apply
homogenization techniques, a prerequisite for either approach is a firm understanding of the
continuum mechanical behavior of an indiwidual nanotube. The same considerations apply
when one considers MWNT’s as potential reinforcing agents; in this case the strength of the
composite is also affected by the ease with which individual nanotubes slide with respect to
each other. In a MWNT the outer nanotube is loaded but, because of the relatively weak
bonding between nanotube layers, the load in not transferred to the inner tubes if they slip
with respect to the outertubes; the interactions between SWNT’s in a bundle is similar to the
interlayer interactions of MWNT’s and, as pointed out in [38], slippage within bundles can
easily occur. An effective continuum model for the mechanical response of MWNT’s depends
on having such a model for SWNT'’s.

A graphene sheet is a honeycomb lattice of carbon atoms in a hexagonal array as depicted in
fig. 1. In terms of base vectors a;, a; the nanotube chirality vector 7 = na;+ma; where n,m
are integers with 0 < |m| < n. The chiral angle 6 is formed by r and a;. An (n, m) nanotube
is constructed by using 7 as a ‘roll-up’ vector, so that with respect to the crystallographically
equivalent sites A, A’, B, and B’ (t = OB is the direction of the nanotube axis) A and A’
coincide as do points B and B’. The rectangle AA’B’B defines the unit cell for the nanotube.
The basic SWNT structures conform to chiral vectors of type (n,0) [zig-zag nanotubes] and
type (n,n) [armchair nanotubes]. The rolled-up unit cell is capped by one half of a Ceo
molecule. Most nanotubes do not exhibit the highly symmetric forms associated with zig-zag
and armchair nanotubes but, rather, have structures in which the ‘hexagons’ are arranged
helically around the tube axis (chiral nanotubes). ‘Hezagons’ lying on the idealized nanotube
surface may be deformed versions of those which form the graphitic sheet, e.g., as indicated in
[12], with reference to the C-C bonds on the nanotube surface, ‘the angles between these bonds
depend on the radius of the cylinder as well as on their orientations ... all angles approach
120° (the value in a perfect graphitic plane) with increasing cylindrical radius. For tubules
with smaller radii, for example, the bond angles deviate up to 9% from their planar value.’
Moreover, ‘upon forming curved surfaces for tubules, the nearest neighbor C-C distances
change depending on their relative orientations with respect to the cylindrical axis direction.’
Statements in, e.g., [13] which point to the nanotube surface as being ‘a conformal mapping



of a two-dimensional honeycomb lattice’ do not accurately depict the deformation which leads
from a unit cell of the graphitic sheet to its image on the surface of the (idealized) cylindrical
nanotube. Many authors have suggested using the elastic moduli of graphite for SWNT’s by
neglecting the change in structure that occurs when a graphene sheet is rolled into a nanotube
but recent work [6] has emphasized that ‘the deformation is, in fact, not homogeneous as the
graphene sheet is rolled into (a carbon nanotube) ... the energy of the (carbon nanotube) not
only depends on the deformation gradient but also depends on higher-order derivatives of (the
deformation gradient). In such a case, a set of high(er)-order elastic constants that belongs
to the framework of multipolar theory needs to be determined.’ Multipolar continuum models
have been considered by the authors in [39]-[44]. Thus, even if we could justify modeling the
graphitic sheet as an isotropic elastic continuum one can not carry isotropic response over to
the nanotube surface and recent molecular dynamics simulations (based on Brenner’s potential
[45]) have been reported by the authors of [6] which lead to a prediction of anisotropic behavior
in the basal plane of a nanotube surface.

Other arguments support the hypothesis that the response of the nanotube surface is not
that an elastic isotropic material. If the graphitic sheet can be considered to be an isotropic
elastic continuum, whose conformal image is the nanotube surface, then the response of the
nanotube should be independent of chirality: as we roll up a unit cell the graphitic sheet the
response of the resulting structure (SWNT) should be independent of the orientation of the
edge of the cell with respect to the lattice vector a; this is not the case, e.g., if one ‘rolls up’ an
arbitrarily oriented rectangular subset of a sheet of rectilinearly orthotropic material, such as
paper, into a cylinder (as as been demonstrated by the authors in [46]). Chirality independence
has been claimed by several authors, e.g., [9] asserts that because of the hezagonal symmetry of
a graphite sheet its elastic properties are two-dimensionally isotropic, and so the helicity of the
tube plays no significant role” and Lu [8] announced results for carbon nanotubes which are
independent of both tube size and chirality. However, it was noted in [19], that ‘the apparent
insensibility of the Young’s modulus on the tube size and chirality observed by Lu is due to
the fact that an empirical pair potential was used in his calculations, and such a model will
not reflect the effects that the curvature will have on the bonding properties of the system.’
The observations made in [19] have appeared in other recent references, e.g., Yao and Lordi
[18] observe that ‘for a nanotube of small radius, Young’s modulus depends on the radius and
helicity of the tube owing to changes in bonding that effect the torsional strain;’ such changes
in bonding are directly related to the nonhomogeneity of the map from the graphene sheet
to the surface of the nanotube. The failure to include torsional strain contributions in MD
simulations of nanotube behavior explains why earlier calculations ‘did not reveal significant
effects of helicity on elastic properties.” In fact it was noted in [47] that ‘the strain energy under
large strain conditions shows significant sensitivity to helicity’ while Zhao, et. al. [2] note that
‘the behavior of nanotubes under large tensile strain depends strongly on their symmetry and
diameter ... different orientations of the carbon bonds with respect to the strain azis in tubes
of different symmetry lead to completely different scenarios.’

One additional set of results mitigate againest modeling a SWNT as an elastic shell which
is isotropic in its basal plane, namely, those results which relate Young’s modulus, bending
stiffness, and in-plane stiffness. Most authors use the equilibrium interlayer spacing between
adjacent nanotubes (h = 0.34nm) as the effective thickness of SWNT’s. However, Yakobson,
et.al., [9] report an in-plane stiffness for a SWNT of C = 59¢V/atom = 360J/m? and a flexural
rigidity of D = 0.85¢V, as well as a Poisson ration of v = 0.19; if one uses these measured
values in conjunction with the standard relations associated with an ‘isotropic’ shell, i.e, D =
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Yh®/12(1—v?) and C = Yh then h = 0.066 nm while the Young’s modulus Y = 5.5T Pa. The
value of h = 0.066 nm obtained is actually smaller than the typical C-C bond length in the
graphitic sheet while the value of Y = 5.5T'Pa is several times higher that the usually quoted
range of 1 — 2T Pa. However, if (as Ru [24] points out) one begins with a value of Y = 1.1T'Pa
(consistent with A = 0.34nm and C = 360J/m?) and substitutes these values into the above
expression for D, a computed D is obtained which is 25 times larger than the measured value
of D = 0.85eV. These inconsistencies are a consequence of assuming that the nanotube
is isotropic in its basal plane. For a cylindrical shell which is the image of a rectilinearly
orthotropic sheet one obtains (Bellout and Bloom [46}, Bloom and Coffin [48]) for the in-plane
principal bending stiffnesses Dy = Y h3/12(1 — (v/v)?) and Dy = 42Y h3/12(1 — (v/7)?) which
are equal if and only if the orthotropic ratio v = c22/c11 = 1 where c¢;; and cy2 are, respectively,
the (in-plane) elastic constants in the axial and radial directions. The construction of a
continuum model for the response of a nanotube should not depend on the a priori assumption
of basal plane isotropic response and should (1) resolve the inconsistencies with respect to the
measured data for Y and C and the values of effective shell thickness h and (i) provide a
basis for the formulation of realistic constitutive relations for nanotube/polymer composites.

IT A Continuum Approach to Nanotube Modelling

In this section we detail an approach to the continuum modeling of single-walled nanotubes;
this approach is based on homogenization theory.

Homogenization theory relates to structures that have two naturally associated length
scales, a ‘micro-scale’ | and and macroscale L; the physical properties of the medium vary
rapidly on the scale [ and more slowly on the larger scale L. The ratio ¢ = /L plays a key role
wherein it is assumed that every property of the medium is of the form F(x,y) with a the
position vector of a point in the medium and y = x/e the vector of stretched coordinates. It
is usually the case that the microstructure is periodic (which is reflected in the periodicity of
F(x,y) with respect to y); this is the case for the graphitic sheet by virtual of the hezagonal
symmetry displayed in fig. 1. For the graphitic sheet € = (z1,22),y = (21/€, 22/€) but in its
(flat) undeformed state physical properties depend only on y, i.e., F = F(y).

In homogenization theory each field quantity u¢(x) = u(x,x/¢) is conceived of as having
a double-scale asymptotic expansion of the form

ut(zx) = u°(x, y) + eul(z, y) + Eu’(x,y) + - - - (1)

Each of the terms u(z,y) is periodic in y with the same period as the structure in question;
the ansatz (1) yields, in many cases, o rigorous procedure for deducing macroscopic equations,
in x, for the overall behavior of the medium.

In the situation we are interested in the global macroscopic behavior is reflected in a set
of homogenized elastic constants ag which mediate the elastic response of a graphitic sheet at
the continuum level. At the microscopic level the mechanical response of the graphitic sheet
will be governed by a conservation law of the form

0 ous
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where the af;(z) = a;5(z, EB—) are periodic in y with period Y, i.e., ai;(z, y) = a;i(x, y+Y)
and satisfy af; = af;, aj; &k 26 7¢;€5,7 > 0. The period Y serves to define a unit cell Y and
will be defined, below, for the graphitic sheet; € and Y for our problem must be chosen so
as to reflect a distinct dependence on the magnitude of the chirality vector as well as on the
chiral angle. The (microscale) forcing function f¢ is also assumed to be Y periodic in y.

The basic idea in the homogenization scheme is to substitute the expansion (1) into (2)
and then identify powers of ¢; using the fact that

0 (% 108
axj¢($7m/6) - <85L'] + Gay]’) (3)

this procedure yields, at order O(e¢™?),

ﬂ.(a- -Q’l:t:
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an equation for the Y periodic function u°(z,y) whose only solution is u°(z,y) = u’(z). At
order O(e™!), assuming u°(x) is known, we obtain for u' the following elliptic equation in a

unit cell Y whose solution must satisfy Y periodicity:

0 ou! Ou®
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It may be shown (see [27], [28]) that u! can be expressed in the form
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where @' () is an arbitrary function of « representing the mean value of ul(z,y) on Y and
- 1
wy, € Wy = {¢ ¢ H (V)| is Yperiodic and ¢ = m/ o(y)dy = 0} is the unique solution of
Y

the variational equation
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If we write (2) in divergence form (in terms of the Cauchy stress tensor ¢) as
3 € € 3 € € 8u;:c
- le t° = f Wlth tik = 1]"8“:‘1:: (8)
expand t¢ as t(x) = t°(x,y) + et!(x,y) + - -+, substitute into the expression for ¢ the
expansion (1) for u¢(x), and then set e = 0, we obtain
0 oug  Bu}
(@) = a; (5; + EVA (9)

The integral form of the conservation law in (8), in a macroscopic domain D, composed of

whole periods, is, — / t*-ndS = / fedV which, to first order in € yields
aD D

—/ io-ndSz———/ fda (10)
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From (10) we obtain the macroscopic equations

oul
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where the homogenized coefficients (elastic constants) afi, are given by

1 ow
hla) = 71 /Y (@ + a5 ). (12)

If the original coefficients a;; = a;;(y) are independent of & then the aﬁ‘j’s are constants; this
will be the case for homogenization of a graphitic sheet because of the strict periodicity of the
‘micro’ (atomistic) structure. We observe that the homogenized medium may be anisotropic
even if its behavior at the microstructure level is isotropic: even if a;; = ady;, (12) implies that

* =TSy Con
in which case it does not necessarily follow that afi = 0 for 1 # k. This observation is of
central importance for the (homogenized) macroscopic behavior of a graphitic sheet.

To apply homogenization theory to a ‘nanotube unit cell’, in an undeformed graphitic sheet,
we now identify both the microscale unit cell Y and the elasticity coefficients a;;(x,y) which
appear in (12).

In fig. 2a we depict one ‘hexagonal’ array of carbon atoms in the unit cell AA’B’'B shown
in fig. 1. We have located the vertex at which the bravis lattice vectors a,, ay originate at
the point (0,0) in the z,y plane. The chiral angle for the array from which this ‘hexagon’ has
been selected is § and the chirality vector 7 has components (n, m) with respect to the basis
vectors a,, ay; the ‘hexagon’ is shown as having a ‘banded’ structure with domain Y; being
an idealized rectilinear domain of width A. In Y; non-zero elastic constants are generated
by the forces associated with C-C bonding; these forces are modeled by molecular dynamics
simulations. In the ‘interior’ of the ‘hexagon’ the elastic constants on the microscale are taken
to be zero. We note that (i) the assumption that the arrays of carbon atoms in the graphitic
lattice are perfect ‘hezagons’ is a mathematical idealization only, (i1) the band width X\ is not
well-defined and may be chosen to be a parameter in the model, and (i) the curves bounding
the domain Y, need not be rectilinear but may be idealized to be so in a first model.

To make clear the dependence of the homogenized coefficients a?j on both the chiral angle
6 and the magnitude v/m2 4+ n? of the chirality vector 7 we proceed as follows: (i) rotate
the banded hexagon in fig. 2a. 8 radians counterclockwise so that the rotated lattice vector
a,, i.e. @) in fig. 2b, is in the direction of the chirality vector 7, (ii) identify the vector of
periodicity as being a, select for the microscale measure the length [ of the line segment OA
in fig. 2a., (iii) choose ¢ = I/v/m2 + n?, and (iv) define the domain of integration in (13) to
be Y = Yy = YP UY) where the Y%7 = 1,2, as shown in fig. 2b are the rotated images of
the planar domains Y;,7 = 1,2 of fig. 2a. In the present situation (undeformed lattice) the
molecular level a;;(y) are of the form

a;(y), yevy
ai;(y) =
0, yeYf

ak ! I d (13)

(14)

While the a;;(y) may appear to be discontinuous along the boundary between Y and Y one



may always introduce standard ‘cut-off’ functions so as to effect a smooth transition from Y?
to Yy.

The remaining issue is the specification of the @;;(y) in (15); these are obtained from MD
simulations ([49], [50] or [51]) of the energy associated with the C-C bonding in graphitic
sheets. The total energy associated with a typical C-C bond has the form

E=Ep+Ey+ Esy+ Ey+ Eyaw + Eu (15)

where Fp is associated with bond stretching, Fy with bond angle bending, Eg with torsion,
E,, with inversions (out-of plane bending), E,qw with Van der Waals interactions, and E
with electrostatic interactions. Our work, to this point has singled out functional forms for
each term in (15) which are given, e.g., in [38] and are based on MD simulations; alternative
forms for E may be found in [52] which compares the consequences of using either standard
‘Brenner’ or ‘modified Morse’ potentials. Employing the Tersoff-Brenner model the review
[6] has shown how to generate the elasticity tensor associated with any particular MD model
by treating the energy E as the potential function for a hyperelastic material; we have now
determined that such a procedure will serve well to generate the @;;(y) in (15). In particular
our early work has directed us to focus on the classical Tersoff-Brenner model with associated
empirical equation

®;; = Pr(ri;) — BijPa(ryj) (16)
in which 4, j are indices for neighboring carbon atoms, 7;; is the corresponding spatial separa-
tion, and ®p and &4 represent the repulsive and attractive part of the potential, respectively.
The effect of bonding angle is included in the term B;;. The energy density E is then given
by

3
E=%/4, ®= Z(bl (17)
1=1
where A, is the area of the undeformed hexagon and ®; is the bond energy for the [-th bond.
Finally, in terms of the Lagrangian strain tensor e;;, associated with a deformation of the
graphene sheet, we will take for the elasticity tensor components

O’E

“ 36,’j 8ekl

which, because of the symmetries with respect to interchange of indices, serves to generate
the Eij in (14)

As the graphene sheet is ‘rolled up’ into a nanotube, the hexagonal array in the unit cell
AA'B'B deforms (fig. 3 depicts the different surface arrays for two types of SWNT’s); the
deformation gradient associated with this mapping (the mapping f : A — B of fig. 4) is
determined, as pointed out in [6], by “the direction and length of the chirality vector and
the subsequent mechanical relaxation after rolling.” For various configurations of deformed
‘hexagonal arrays’ on nanotube ‘surfaces,” one must conformally map those surfaces onto the
plane (the mapping g : B — C in fig. 4), apply homogenization to the planar configuration C,
and, subsequently to determine the composition of the mappings f and g. The deformation
gradient associated with the mapping gof serves to carry the homogenized coefficients a?j,
computed for the graphitic sheet, onto a set of associated homogenized coefficients &f‘j for
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the nanotube. While the homogenized coeflicients a?j should be constants we expect that
dﬁ’j = &:‘J(m) The result of this process may lead to a set of higher-order elastic constants and,
thus, to the need for a multipolar theory.

Our work has shown that two classes of results on SWNT shell thickness are prevalent in
the literature: those which assume, a priori, a thickness h equal to the inter-layer separation
of graphitic sheets in a graphite crystal and those which are ‘backed out’ from experimental
measurements of in-plane stiffness and flezural rigidity coupled with an assumption of isotropic
elastic response. The in-plane elastic constants in the axial and radial directions for the
SWNT, c¢;; and cg, are given by ¢j; = &;‘1 and ¢y = 632 so that the orthotropic constant
v = ah,/ak; this constant can be used to compute the in-plane principal bending stiffnesses D;
which is used in place of the flexural rigidity associated with isotropic response to ‘back out’
a predicted shell thickness h. Such an approach assumes orthotropic response in the basal
plane of a SWNT surface (i.e., @, = @) as opposed to full anisotropic response. While
the principal bending stiffnesses associated with anisotropic response may be computed, an
alternative approach to computing h, which is based on [31]-[34] may also be used.

The focus of the work in [31]-[34] is the development of an equivalent continuum model of a
representative volume element (RVE) for a nanotube/polymer composite; as a first step in the
formulation of such a model, an atomistic model of the equilibrium response of the graphitic
sheet is obtained by employing MD and expressing the total molecular potential energy in
the form (15). A transition is then effected which carries the analysis (see fig. 5) from the
MD simulation of the energy for the hexagonal array of carbon atoms (5a), to the energy
associated with deformation of an ‘equivalent’ pin-jointed truss (5b), to the strain energy for
an ‘equivalent’ hexagonal plate of thickness h (5¢c). Using only the terms, Er and Ey, in (15),
the energy for the configuration of fig. 5a was taken in the form

E =Y Ki(pa—P)*+ > Kl(fa— ©.) (18)

where P, and ©, refer, respectively, to the undeformed interatomic distance of bond number
a and the undeformed bond-angle number a, while p, and 6, are, respectively, the interatomic
distance and bond angle after deformation. The symbols K? and K¢ stand for the (MD)
force constants associated with stretching and angle variance. The energy (18) ignores
the contribution of torsional strain energy. Using (18) an equivalent continuum model is
developed in [32] in a two-step process; first, the hexagonal array of carbon atoms is replaced
by a pin-jointed truss model in which truss elements are used to represent the chemical bonds
in the lattice structure. In fig. 5b deformations of rods of type a are used to describe bond
stretching while stretching and contraction of the rods of type b are used to describe angle
variations. The mechanical strain energy for such a truss is

: Ay
E:ZZ—@T(TE—RW (19)
b a a

where A% and Y are the cross-sectional area and Young’s modulus of rod a of truss member
type b, respectively, while 78 — R? is the ‘stretching’ of rod a of truss member type b, and RS, b
are the undeformed and deformed lengths, respectively, of the truss elements. By comparing
(18) and (19) the strain energy of the truss model is ezpressed in terms of the potential energy
constants K? and K?. Finally, the truss model in fig. 5b is replaced by an ‘equivalent’
continuum plate (fig. 5¢); the authors assume the ‘equivalent’ plate to be elastically isotropic
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using for its mechanical properties the Young’s modulus and Poisson ratio of graphite. It is
also assumed that the same amount of elastic strain energy is stored in the two models (truss
model (5b) and continuum plate (5¢)) when each is deformed under identical static loading
conditions; comparison of the strain energies for the models in figs. 5b,c then yields a result
for the thickness of the ‘equivalent’ continuum plate and, therefore, for the effective thickness
of the graphitic sheet. The computations in [32] yield effective thicknesses in the range 0.24nm
- 0.28nm, an improvement over the a priori assumption of 0.34nm but not an improvement
which resolves the inconsistencies reported in § I1.

In the work we have initiated (i) the a priori assumption of a strain energy based on
isotropic elastic response for the continuum plate (fig. 5c) is replaced by a strain energy
based on the constitutive response predicted by homogenization and (i) the energy E for the
atomistic scale hezagon is expanded to include a suitable MD expression for Eg, the torsional
strain energy; equivalent energy terms must be incorporated into the total energy for the pin-
jointed truss model and then compared, under similar static loading conditions, with the new
elastic strain energy expression for the continuum plate so as to yield a prediction of effective
thickness; this will make possible the computation of a realistic Young’s modulus.
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Figure 1 (from P.J.F. Harris, Carbon Nanotubes and Related Structures, New
Materials for the Twenty-First Century, Cambridge University Press,
2003, Cambridge, U.K.)
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Figure 3. (from Q. Zhao, M. Nardelli, & J. Bernholc, ‘Ultimate Strength
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Figure 5. (from T.S. Gates & J.A. Hinkley, ‘Computational Materials: Modeling
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